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Manipulating Tumor Acidification as a Cancer 
Treatment Strategy
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Abstract
Manipulation of the extracellular and/or intracellular pH of 
tumors may have considerable potential in cancer therapy. 
The extracellular space of most tumors is mildly acidic, owing 
to exuberant production of lactic acid. Aerobic glycolysis 

– attributable largely to chronic activation of hypoxia-inducible 
factor-1 (HIF-1) – as well as tumor hypoxia, are chiefly 
responsible for this phenomenon. Tumor acidity tends to 
correlate with cancer aggressiveness; in part, this reflects the 
ability of HIF-1 to promote invasiveness and angiogenesis. But 
there is growing evidence that extracellular acidity per se 
boosts the invasiveness and metastatic capacity of cancer 
cells; moreover, this acidity renders cancer cells relatively 
resistant to the high proportion of chemotherapeutic drugs 
that are mildly basic, and may impede immune rejection of 
tumors. Thus, practical strategies for raising the extracellular 
pH of tumors may have therapeutic utility. In rodents, oral 
administration of sodium bicarbonate can raise the extracel-
lular pH of tumors, an effect associated with inhibition of 
metastasis and improved responsiveness to certain cytotoxic 
agents; clinical application of this strategy appears feasible. As 
an alternative approach, drugs that inhibit proton pumps in 
cancer cells may alleviate extracellular tumor acidity while 
lowering the intracellular pH of cancer cells; reduction of 
intracellular pH slows proliferation and promotes apoptosis in 
various cancer cell lines. Well-tolerated doses of the proton 
pump inhibitor esomeprazole have markedly impeded tumor 
growth and prolonged survival in nude mice implanted with a 
human melanoma. Finally, it may prove feasible to exploit the 
aerobic glycolysis of cancers in hyperacidification therapies; 
intense intracellular acidification of cancer cells achieved by 
induced hyperglycemia, concurrent administration of proton 
pump inhibitor drugs, and possibly dinitrophenol, may have 
the potential to kill cancer cells directly, or to potentiate their 
responsiveness to adjunctive measures. A similar strategy, but 
without proton pump inhibition, could be employed to 
maximize extracellular tumor acidity, enabling tumor-
selective release of cytotoxic drugs encased in pH-sensitive 
nanoparticles.
(Altern Med Rev 2010;15(3)264-272)

Introduction
Manipulation of the extracellular and/or intracel-

lular pH of tumors may have considerable potential 
in cancer therapy. Four distinct strategies (Figure 1) 
can be envisioned: (1) alkalizer therapy that 
increases the pH of the extracellular space; (2) 
proton pump inhibition that decreases the intracel-
lular pH, while increasing the extracellular pH; (3) 
acute intracellular acidification that kills cancer 
cells directly or potentiates their sensitivity to adju-
vant measures; and (4) acute extracellular acidifica-
tion that enables tumor-selective release of cyto-
toxic drugs encased in pH-sensitive nanoparticles.

Extracellular Acidity – A Marker for and 
Mediator of Cancer Aggressiveness

As originally reported by Otto Warburg, most 
cancers are characterized by aerobic glycolysis 

– wasteful glycolytic conversion of glucose to lactic 
acid, even when sufficient oxygen is available to 
support efficient mitochondrial respiration. The 
extent to which this phenomenon is expressed 
tends to correlate with tumor aggressiveness. 
Recent studies have clarified that the aerobic 
glycolysis of cancer cells is commonly attributable 
to chronic overactivation of the transcription 
factor hypoxia-inducible factor-1 (HIF-1), which 
boosts expression of a range of glycolytic enzymes 
and pyruvate dehydrogenase kinase-1 (which 
functions to inhibit pyruvate dehydrogenase and 
thus expedite conversion of pyruvate to lactate) 
and promotes mitochondrial autophagy.1-4 Tumor 
production of lactic acid is also driven by anaerobic 
glycolysis in tumor regions that are hypoxic. Owing 
to avid production of lactic acid, the extracellular 
space of most tumors is mildly acidic, with the 
greatest degree of acidity encountered in the tumor 
core. Cancer cells, however, usually maintain a 
normal intracellular pH, owing to proton pumps 
and intracellular buffers.5-7
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The degree to which pH is depressed in tumors 
– as mirrored by their lactate levels – tends to 
correlate with prognosis, the more acidic tumors 
being associated with poorer outcome.8-10 In part, 
this phenomenon may reflect the fact that tumor 
acidity is serving as a marker for HIF-1 activation, 
which works in a variety of complementary ways to 
boost tumor capacity for invasion, metastasis, 
angiogenesis, and chemoresistance.11,12 However, 
there is increasing evidence that extracellular 
acidity per se contributes to the aggressiveness of 
cancer cells, boosting extracellular proteolytic 
activities, expression of pro-angiogenic factors, and 
metastatic capacity.7,10 Homeostatically, this makes 
good sense – extracellular acidity, like hypoxia, is a 
typical consequence of suboptimal perfusion, and 
it is not surprising that cells have evolved to sense 
this acidity and take appropriate countermeasures.

Cultivation of various types of cancer cells under 
the mildly acidic conditions that prevail in many 
tumors has been reported to boost transcription of 
the angiogenic factors vascular endothelial growth 
factor (VEGF) and interleukin(IL)-8, increase 
extracellular release and/or expression of key 
proteases such as cathepsin B, matrix 

metalloproteinases -2 and -9, and to amplify the 
invasiveness and metastatic capacity of cancer cells, 
in vitro and in vivo.13-23 In one particularly striking 
study, incubation of various human melanoma cell 
lines at pH 6.8 (compared with 7.4) for 48 hours 
approximately doubled the yield of lung metastases 
following their intravenous administration in nude 
mice.21 An analogous impact of prolonged exposure 
to extracellular acidity on the invasiveness and 
migratory activity of human melanoma cells in 
vitro has also been reported.22,23

The effect of extracellular acidity on HIF-1 
activity appears so far to have received little study. 
Activated transcription of VEGF and IL-8 under 
acid conditions has been traced to increased 
activity of nuclear factor-kappaB and activator 
protein-1 in certain cancer cell lines.14,16 Increased 
extracellular proteolytic activity appears to reflect, 
in part, an increased tendency of lysosomes to 
migrate to the cell periphery and discharge their 
contents via exocytosis.18,24

Acidification of the extracellular space in tumors 
can also contribute to chemoresistance. Since many 
cytotoxic cancer drugs are mildly basic, their 
increased protonation in the extracellular space of 

Figure 1. Therapeutic Strategies for Manipulating Tumor pH
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tumors would be expected to impede their transit 
through cell membranes, rendering cancer cells less 
susceptible to their effects.25-27 Moreover, extracel-
lular lactic acid can suppress the tumoricidal 
activity of cytotoxic T lymphocytes and natural 
killer cells; it also inhibits lymphocyte proliferation 
and dendritic cell maturation.28-36 These immuno-
suppressive effects appear not to be mediated by 
acidity per se, but by influx of lactic acid via a 
lactate/H+ co-transporter that under neutral 
conditions functions to remove lactic acid from 
leukocytes.

Since tumor acidity appears to make a meaning-
ful contribution to cancer aggressiveness, chemore-
sistance, and evasion of immune rejection, mea-
sures for normalizing the pH of tumors may have 
therapeutic utility. Aerobic glycolysis and tumor 
acidification could be suppressed by measures that 
inhibit the activity of HIF-1. Various practical 
strategies for achieving this may be currently 
available, and new drugs are being developed that 
target this transcription factor.12,37 However, 
alternative measures for ameliorating the extracel-
lular acidity of tumors have been proposed. Novel 
strategies for exploiting the aerobic glycolysis of 
tumors in cancer therapy may also prove feasible.

Systemic Buffering: Increasing 
Extracellular pH

Gillies et al have shown that dietary measures 
that boost the bicarbonate level of plasma can 
elevate the subnormal pH of tumors to some 
degree, without notably influencing the pH of 
blood or healthy tissues.25,26 The failure of oral 
bicarbonate to influence the pH of plasma presum-
ably reflects the fact that a physiological buffer 
tends to drive pH to the physiological value of 7.4.7 
Furthermore, they demonstrated that this strategy 
may have clinical potential. In nude mice 
implanted with a human breast cancer, chronic oral 
administration of sodium bicarbonate, while not 
influencing the expansion of primary tumors, 
markedly reduced the number and size of metasta-
ses in lung, visceral organs, and lymph nodes.38 
These findings thus raise the possibility that 
systemic buffering, achieved by oral administration 
of high doses of agents such as sodium bicarbonate 
or trisodium citrate39 – or possibly even a natural 
diet of low-to-moderate protein content, but high 
in potassium-rich fruits, vegetables, and juices40-42 

– could dampen the aggressiveness of certain 
cancers by partially alleviating their extracellular 
acidity.7 Whether this strategy would influence 
transcriptional activity of HIF-1 is unclear, but it 

evidently would tend to counteract one of the key 
pathogenic downstream consequences of HIF-1 
overactivation. It is curious to note that alkalizing 
diets have long been recommended by naturopathic 
physicians as a strategy for slowing cancer spread, 
and that oral administration of sodium bicarbonate 

– albeit in doses that likely are clinically suboptimal 
– has also recently gained popularity as an alterna-
tive cancer therapy.

In the sodium bicarbonate breast cancer study, 
mice received about 0.84 mEq Na daily; assuming 
that the mice weighed about 20 g, and normalizing 
by the 3/4th power of relative weights,43 the 
equivalent dose in a 70 kg human would be 378 
mEq, which corresponds to a daily dose of 31.75 g 
sodium bicarbonate or 32.5 g trisodium citrate. At 
the Whitaker Wellness Institute, the authors are 
currently implementing an alkalinizing therapy 
with cancer patients. Large acute doses of either 
sodium bicarbonate or trisodium citrate (which 
have been studied as aids to exercise performance, 
usually at 40-60 mg/kg) can induce temporary 
nausea and diarrhea;39 it therefore is prudent to 
administer the daily dose gradually throughout the 
day. Moreover, gradual administration should more 
aptly mimic the mouse study, in which sodium 
bicarbonate was administered in drinking water, 
and thus was consumed continuously during 
waking hours, presumably achieving a more even 
elevation of tumor extracellular pH than could be 
achieved with bolus doses. The protocols currently 
employed are: add 500 mL (about 2 cups) of water 
to a small teapot and stir in two rounded teaspoons 
(about 12 g) of sodium bicarbonate or trisodium 
citrate plus one packet of sweetener of choice. 
Patients who are “on the go” can prepare this 
beverage in a 500-mL water bottle. This is to be 
consumed gradually over an hour or more. If this 
procedure is followed three times daily (e.g., in 
mid-morning, mid-afternoon, and late evening), 
about 36 g of sodium bicarbonate or trisodium 
citrate will be provided daily. If desired, this fluid 
can be heated to make tea or herb teas, or can be 
flavored with a Crystal Light™-type product. 
Sodium bicarbonate has the advantage that it is 
quite inexpensive and readily available; trisodium 
citrate may be less likely to promote intestinal gas.

Exploiting Proton Pump Inhibitors: 
Decreasing Intracellular pH

As an alternative or adjunctive strategy for 
correcting the extracellular acidity of tumors, a 
number of researchers have explored inhibition of 
the membrane ion pumps that maintain an 
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alkaline intracellular pH by extruding protons or 
importing bicarbonate ions. Many cancers express 
extracellular forms of carbonic anhydrase – CAIX 
and CAII – which acidify the extracellular space 
while generating bicarbonate that can be 
imported.44,45 A Na+/H+ exchanger (NHE), of which 
several isoforms exist,46,47 is a prominent mediator 
of proton extrusion; the NHE1 isoform is ubiqui-
tously expressed.48 Proton extrusion is also 
achieved by the vacuolar H+-ATPase (V-ATPase), 
which hydrolyzes ATP to drive proton pumping.49 
Although the chief physiological role of this pump 
is to acidify intracellular vacuoles such as lyso-
somes and endosomes, it is also expressed in the 
plasma membrane of many cancer cells, particu-
larly those with metastatic capacity.50-54 Moreover, 
the protons pumped into vacuoles often reach the 
extracellular space when these vacuoles fuse with 
the plasma membrane and extrude their contents. 
A Na+-dependent Cl-/HCO3

- exchanger also func-
tions to maintain an alkaline intracellular pH.

Proton pump inhibition tends to decrease 
intracellular pH, as it raises that of the extracellular 
space. The ameliorative impact on extracellular 
acidity tends to be sustained (despite the fact that 
the rate of lactate generation must ultimately 
match the rate of lactate export), presumably 
because intracellular acidity tends to suppress the 
efficiency of glycolysis.52 The intracellular acidifica-
tion associated with proton pump inhibition can 
have an impact on cancer cell behavior, indepen-
dent of that of the associated elevation of extracel-
lular pH. Indeed, proton pump inhibitors exert 
anti-proliferative and pro-apoptotic effects on 
certain cancer cell lines;55-60 furthermore, intracel-
lular acidification has been shown to enhance the 
killing efficacy of hyperthermia (42° C+) as well as 
the apoptotic response to tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL).61-64

Although a number of different agents have been 
employed as proton pump inhibitors in cell culture 
or rodent studies, few of these have been used 
clinically. Notable exceptions are the proton pump 
inhibitor drugs (PPIs; e.g., omeprazole, esomepra-
zole) used clinically to suppress gastric acidity. 
When activated by mildly acidic conditions, these 
drugs can inhibit the V-ATPase by a covalent 
interaction.27,65 As emphasized by De Milito et al, 
the particular merit of these drugs is that their 
impact can be tumor-specific, as they are activated 
in the mildly acidic extracellular space of 
tumors.27,52,56 Other agents, such as bafilomycin, 
that act to inhibit V-ATPase, are tissue non-selective 

and have been found to have unacceptable systemic 
toxicity. In vitro, V-ATPase inhibitors have exerted 
anti-proliferative, pro-apoptotic, and thermosensi-
tizing effects.56,57,59,60,63,66 In vivo, non-toxic doses of 
PPIs, analogous to those used clinically in 
Zollinger-Ellison syndrome, have been shown to 
suppress the growth of a human melanoma in 
nude mice, an effect associated with a near-dou-
bling of survival time.67 Knockdown of V-ATPase 
expression achieved via small interfering RNA in a 
human hepatocellular carcinoma was found to 
markedly slow the growth and impede the meta-
static spread of this cancer in nude mice.68 And 
another agent inhibitory to V-ATPase has been 
reported to suppress the formation of spontaneous 
lung metastases in mice transplanted with a 
human non-small cell lung cancer.69 Pre-
administration of omeprazole notably potentiated 
the growth-retardant impact of cisplatin on a 
human melanoma in nude mice, presumably at 
least in part because cisplatin is a mildly basic drug 
whose intracellular uptake is impaired by the acidic 
extracellular milieu of tumors.27

Another key mediator of proton extrusion is 
NHE1. This pump can be inhibited by supra-clinical 
concentrations of the diuretic amiloride. A deriva-
tive of amiloride, EIPA, is about 200 times more 
potent in this regard, but has never been developed 
for clinical use.70,71 More recent studies have 
employed the NHE1 inhibitor cariporide, which 
has been taken to phase III trials as a drug for 
decreasing risk of myocardial infarction (MI) 
subsequent to coronary bypass surgery.72,73 
Unfortunately, this agent is unlikely to be approved 
for this purpose, as it was found to modestly 
increase cerebrovascular mortality while decreasing 
MI risk.73 Nonetheless, a well-tolerated dosage 
schedule has been established, so it is conceivable 
that this drug could be developed as a cancer 
therapeutic if its utility in this regard could be 
established in rodent studies. A number of studies 
have established that this agent, often used in 
conjunction with an inhibitor of the Cl-/HCO3

- 
exchanger, can lower the intracellular pH of cancer 
cells.58,74-76 In a human pancreatic adenocarcinoma 
cell line, inhibitors of V-ATPase and NHE1 have 
been shown to have an additive impact on intracel-
lular pH and on thermosensitization; this suggests 
the desirability of evaluating joint administration 
of PPIs and cariporide in rodents.63
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Intracellular Hyperacidification 
Therapy: Acutely Maximizing 
Intracellular Acidity

A sufficiently large reduction in intracellular pH 
can promote apoptosis in cancer cells,55-60 could be 
used to achieve tumor-specific uptake or activation 
of certain drugs whose effects are pH-sensi-
tive,27,75,77,78 and can potentiate the cytotoxic impact 
of local hyperthermia (~42° C) and TRAIL.61-64 This 
raises the interesting prospect that acute intracel-
lular tumor acidification could be developed as a 
strategy for achieving rapid substantial tumor kill 

– perhaps when used in conjunction with other 
cytodisruptive measures whose activity is greater 
at acidic pH. Indeed, some researchers have 
suggested the utility of such a strategy for potenti-
ating the efficacy of concurrent local hyperthermia 
or chemotherapy.

An increase in tumor-specific acidification can be 
achieved if the rate of tumor glycolysis is maxi-
mized. Substrate availability for glycolysis is usually 
suboptimal in tumors, owing to the fact that, 
especially in aggressive tumors with high glycolytic 
capacity, tumor glucose levels tend to be relatively 
low owing to avid uptake of glucose for glycolysis 
and inefficient tumor perfusion.79 Hence, induced 
hyperglycemia tends to boost tumor glycolysis and 
decrease extracellular tumor pH by elevating tumor 
glucose levels; indeed, there are many reports that 
induced hyperglycemia tends to lower the extracel-
lular pH of tumors, both in rodents and in human 
cancers in situ.74,79-88

A further boost in glycolysis could be achieved by 
suppressing mitochondrial ATP generation; 
inhibitors or uncouplers of electron transport 
could be employed for this purpose. In many 
rodent and cell culture studies, an inhibitor of 
mitochondrial complex I, meta-iodobenzylguani-
dine, has been shown to amplify the depression of 
tumor intracellular pH achieved with hyperglyce-
mia and/or proton extrusion inhibitors.74,89-92 This 
agent, in radioiodinated form, has been used in the 
treatment of neuroendocrine tumors93 – but the 
doses employed for this purpose are lower than 
those required for effective mitochondrial inhibi-
tion. A more practical and intriguing prospect in 
this regard is offered by the uncoupling agent 
dinitrophenol (DNP). DNP is mildly acidic, and its 
uncoupling activity is reported to be six-fold 
greater at pH 6.4 than at pH 7.4;94 thus, its impact 
might be amplified in acidified tumors.95

Moreover, DNP was employed clinically in the 

1930s as an anti-obesity agent.96 Although in 
excess it can give rise to lethal hyperthermia, it 
seems to be reasonably well tolerated in a daily 
dose of 3-5 mg/kg – a sufficient dose to raise the 
metabolic rate and promote substantial weight loss. 
In human melanoma cell cultures, addition of DNP 
(0.1 mM) very markedly potentiated the increase in 
glycolysis achieved with high glucose exposure.91 
Sub-millimolar concentrations of DNP have been 
reported to slow proliferation, induce apoptosis, 
and exert a pro-oxidant effect in a human lung 
adenocarcinoma cell line;97 albeit the concentra-
tions employed in this study are somewhat higher 
than would be systemically tolerable.

These considerations suggest that it might be 
appropriate to examine the joint impact of hyper-
glycemia (achieved by sustained high-dose intrave-
nous glucose infusion), PPIs, cariporide, and 
physiologically-tolerable concentrations of DNP on 
intracellular pH and survival of cancer cells in vitro 
and in rodents. Such a strategy could also be 
assessed as an adjuvant to local hyperthermia or to 
administration of cytotoxic agents that are more 
active at acidic intracellular pH. If this strategy 
showed good efficacy in rodents, it could rapidly be 
translated to clinical application, as each of the 
drugs involved has already received substantial 
clinical evaluation and is known to be reasonably 
safe within defined dose levels. Owing to the 
requirement for hyperglycemia, this approach 
could only be used episodically. Conceivably, 
measures that raise extracellular tumor pH could 
be employed in the intervals between treatments.

Extracellular Hyperacidification 
Therapy: Acutely Maximizing 
Extracellular Acidity

An alternative approach to hyperacidification 
therapy would be to maximize the acidity of the 
tumor extracellular space (as with hyperglycemia 
and DNP, in the absence of proton pump inhibi-
tors), with the intent of achieving tumor-selective 
delivery of cytotoxic drugs that are activated by 
acidity. In particular, nanoparticles that break 
down or fuse with cell membranes under mildly 
acidic conditions are being developed for selective 
drug delivery to acidified tumors.98-101 Concurrent 
administration of proton pump inhibitors would be 
expected to impede optimal extracellular acidifica-
tion, since the resulting suppression of intracellular 
pH would act as a brake on glycolysis, slowing the 
rate of lactate generation.
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Summing Up
Manipulation of the extracellular and/or 

intracellular pH of tumors may have considerable 
potential in cancer therapy. At least four distinct 
strategies merit evaluation in this regard: (1) 
alkalizer therapy that increases the pH of the 
extracellular space; (2) proton pump inhibition that 
decreases the intracellular pH, while increasing the 
extracellular pH; (3) acute intracellular acidification 
that may be directly cytocidal or that potentiates 
the lethality of adjuvant measures; and (4) acute 
extracellular acidification that enables tumor-
selective release of cytotoxic drugs from acid-labile 
nanoparticles.

The extracellular acidity that characterizes most 
tumors – reflecting aerobic glycolysis induced by 
HIF-1 overactivity, as well as hypoxia in some 
tumor regions – tends to correlate negatively with 
cancer prognosis and is now known to be more 
than an epiphenomenon. Extracellular acidity can 
increase the invasive spread of cancer cells, while 
protecting them from immune attack and from the 
many cytotoxic agents that are mildly basic. 
Fortunately, feasible doses of safe alkalizing agents, 
such as sodium bicarbonate, have the potential to 
alleviate tumor acidification to some degree; in 
cancer-bearing mice, this strategy has been found 
to suppress metastatic spread and improve 
response to chemotherapy. The extracellular acidity 
of tumors can also be corrected with proton 
pump-inhibitory drugs that are selectively acti-
vated in an acidic milieu. This approach has the 
ancillary advantage that it promotes the intracel-
lular acidification of cancer cells; intracellular 
acidity tends to slow cellular proliferation while 
boosting apoptosis. Finally, inasmuch as intense 
intracellular acidification can be lethal, or can 
potentiate the lethality of other agents, acute 
hyperacidification therapies can be envisioned, in 
which measures that maximize cancer glycolysis 
(temporary induced hyperglycemia and possibly 
dinitrophenol) are employed concurrently with 
proton pump inhibitors. A variant approach would 
be to acutely amplify extracellular tumor acidity by 
maximizing tumor glycolysis in the absence of 
proton pump inhibitors, so as to induce selective 
uptake of concurrently administered drugs 
enclosed in acid-labile nanoparticles.

The Warburg phenomenon, with the attendant 
acidification of the extracellular milieu of tumors, 
has fascinated cancer scientists for many decades, 
but the modulation of these phenomena has yet to 
earn a role in orthodox cancer therapy. This 
situation may be on the brink of changing, as 

molecular biologists are now defining the ways in 
which extracellular or intracellular acidity can 
influence cancer behavior and are devising novel 
and clinically feasible strategies for manipulating 
tumor acidity. Clearly, a number of these strategies 
have intriguing potential and deserve further 
exploration in pre-clinical and clinical studies.
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